On this tutorial, we stroll you thru the seamless integration of AutoGen and Semantic Kernel with Google’s Gemini Flash mannequin. We start by organising our GeminiWrapper and SemanticKernelGeminiPlugin lessons to bridge the generative energy of Gemini with AutoGen’s multi-agent orchestration. From there, we configure specialist brokers, starting from code reviewers to inventive analysts, demonstrating how we are able to leverage AutoGen’s ConversableAgent API alongside Semantic Kernel’s adorned capabilities for textual content evaluation, summarization, code evaluation, and inventive problem-solving. By combining AutoGen’s sturdy agent framework with Semantic Kernel’s function-driven strategy, we create a sophisticated AI assistant that adapts to a wide range of duties with structured, actionable insights.
!pip set up pyautogen semantic-kernel google-generativeai python-dotenv
import os
import asyncio
from typing import Dict, Any, Checklist
import autogen
import google.generativeai as genai
from semantic_kernel import Kernel
from semantic_kernel.capabilities import KernelArguments
from semantic_kernel.capabilities.kernel_function_decorator import kernel_function
We begin by putting in the core dependencies: pyautogen, semantic-kernel, google-generativeai, and python-dotenv, making certain we’ve all the required libraries for our multi-agent and semantic perform setup. Then we import important Python modules (os, asyncio, typing) together with autogen for agent orchestration, genai for Gemini API entry, and the Semantic Kernel lessons and interior designers to outline our AI capabilities.
GEMINI_API_KEY = "Use Your API Key Right here"
genai.configure(api_key=GEMINI_API_KEY)
config_list = (
{
"mannequin": "gemini-1.5-flash",
"api_key": GEMINI_API_KEY,
"api_type": "google",
"api_base": "https://generativelanguage.googleapis.com/v1beta",
}
)
We outline our GEMINI_API_KEY placeholder and instantly configure the genai shopper so all subsequent Gemini calls are authenticated. Then we construct a config_list containing the Gemini Flash mannequin settings, mannequin title, API key, endpoint kind, and base URL, which we’ll hand off to our brokers for LLM interactions.
class GeminiWrapper:
"""Wrapper for Gemini API to work with AutoGen"""
def __init__(self, model_name="gemini-1.5-flash"):
self.mannequin = genai.GenerativeModel(model_name)
def generate_response(self, immediate: str, temperature: float = 0.7) -> str:
"""Generate response utilizing Gemini"""
strive:
response = self.mannequin.generate_content(
immediate,
generation_config=genai.varieties.GenerationConfig(
temperature=temperature,
max_output_tokens=2048,
)
)
return response.textual content
besides Exception as e:
return f"Gemini API Error: {str(e)}"
We encapsulate all Gemini Flash interactions in a GeminiWrapper class, the place we initialize a GenerativeModel for our chosen mannequin and expose a easy generate_response technique. On this technique, we cross the immediate and temperature into Gemini’s generate_content API (capped at 2048 tokens) and return the uncooked textual content or a formatted error.
class SemanticKernelGeminiPlugin:
"""Semantic Kernel plugin utilizing Gemini Flash for superior AI operations"""
def __init__(self):
self.kernel = Kernel()
self.gemini = GeminiWrapper()
@kernel_function(title="analyze_text", description="Analyze textual content for sentiment and key insights")
def analyze_text(self, textual content: str) -> str:
"""Analyze textual content utilizing Gemini Flash"""
immediate = f"""
Analyze the next textual content comprehensively:
Textual content: {textual content}
Present evaluation on this format:
- Sentiment: (optimistic/damaging/impartial with confidence)
- Key Themes: (fundamental matters and ideas)
- Insights: (necessary observations and patterns)
- Suggestions: (actionable subsequent steps)
- Tone: (formal/casual/technical/emotional)
"""
return self.gemini.generate_response(immediate, temperature=0.3)
@kernel_function(title="generate_summary", description="Generate complete abstract")
def generate_summary(self, content material: str) -> str:
"""Generate abstract utilizing Gemini's superior capabilities"""
immediate = f"""
Create a complete abstract of the next content material:
Content material: {content material}
Present:
1. Govt Abstract (2-3 sentences)
2. Key Factors (bullet format)
3. Necessary Particulars
4. Conclusion/Implications
"""
return self.gemini.generate_response(immediate, temperature=0.4)
@kernel_function(title="code_analysis", description="Analyze code for high quality and recommendations")
def code_analysis(self, code: str) -> str:
"""Analyze code utilizing Gemini's code understanding"""
immediate = f"""
Analyze this code comprehensively:
```
{code}
```
Present evaluation protecting:
- Code High quality: (readability, construction, finest practices)
- Efficiency: (effectivity, optimization alternatives)
- Safety: (potential vulnerabilities, safety finest practices)
- Maintainability: (documentation, modularity, extensibility)
- Strategies: (particular enhancements with examples)
"""
return self.gemini.generate_response(immediate, temperature=0.2)
@kernel_function(title="creative_solution", description="Generate inventive options to issues")
def creative_solution(self, downside: str) -> str:
"""Generate inventive options utilizing Gemini's inventive capabilities"""
immediate = f"""
Downside: {downside}
Generate inventive options:
1. Standard Approaches (2-3 commonplace options)
2. Progressive Concepts (3-4 inventive options)
3. Hybrid Options (combining totally different approaches)
4. Implementation Technique (sensible steps)
5. Potential Challenges and Mitigation
"""
return self.gemini.generate_response(immediate, temperature=0.8)
We encapsulate our Semantic Kernel logic within the SemanticKernelGeminiPlugin, the place we initialize each the Kernel and our GeminiWrapper to energy customized AI capabilities. Utilizing the @kernel_function decorator, we declare strategies like analyze_text, generate_summary, code_analysis, and creative_solution, every of which constructs a structured immediate and delegates the heavy lifting to Gemini Flash. This plugin lets us seamlessly register and invoke superior AI operations inside our Semantic Kernel setting.
class AdvancedGeminiAgent:
"""Superior AI Agent utilizing Gemini Flash with AutoGen and Semantic Kernel"""
def __init__(self):
self.sk_plugin = SemanticKernelGeminiPlugin()
self.gemini = GeminiWrapper()
self.setup_agents()
def setup_agents(self):
"""Initialize AutoGen brokers with Gemini Flash"""
gemini_config = {
"config_list": ({"mannequin": "gemini-1.5-flash", "api_key": GEMINI_API_KEY}),
"temperature": 0.7,
}
self.assistant = autogen.ConversableAgent(
title="GeminiAssistant",
llm_config=gemini_config,
system_message="""You're a sophisticated AI assistant powered by Gemini Flash with Semantic Kernel capabilities.
You excel at evaluation, problem-solving, and inventive considering. At all times present complete, actionable insights.
Use structured responses and think about a number of views.""",
human_input_mode="NEVER",
)
self.code_reviewer = autogen.ConversableAgent(
title="GeminiCodeReviewer",
llm_config={**gemini_config, "temperature": 0.3},
system_message="""You're a senior code reviewer powered by Gemini Flash.
Analyze code for finest practices, safety, efficiency, and maintainability.
Present particular, actionable suggestions with examples.""",
human_input_mode="NEVER",
)
self.creative_analyst = autogen.ConversableAgent(
title="GeminiCreativeAnalyst",
llm_config={**gemini_config, "temperature": 0.8},
system_message="""You're a inventive downside solver and innovation skilled powered by Gemini Flash.
Generate modern options, and supply contemporary views.
Stability creativity with practicality.""",
human_input_mode="NEVER",
)
self.data_specialist = autogen.ConversableAgent(
title="GeminiDataSpecialist",
llm_config={**gemini_config, "temperature": 0.4},
system_message="""You're a knowledge evaluation skilled powered by Gemini Flash.
Present evidence-based suggestions and statistical views.""",
human_input_mode="NEVER",
)
self.user_proxy = autogen.ConversableAgent(
title="UserProxy",
human_input_mode="NEVER",
max_consecutive_auto_reply=2,
is_termination_msg=lambda x: x.get("content material", "").rstrip().endswith("TERMINATE"),
llm_config=False,
)
def analyze_with_semantic_kernel(self, content material: str, analysis_type: str) -> str:
"""Bridge perform between AutoGen and Semantic Kernel with Gemini"""
strive:
if analysis_type == "textual content":
return self.sk_plugin.analyze_text(content material)
elif analysis_type == "code":
return self.sk_plugin.code_analysis(content material)
elif analysis_type == "abstract":
return self.sk_plugin.generate_summary(content material)
elif analysis_type == "inventive":
return self.sk_plugin.creative_solution(content material)
else:
return "Invalid evaluation kind. Use 'textual content', 'code', 'abstract', or 'inventive'."
besides Exception as e:
return f"Semantic Kernel Evaluation Error: {str(e)}"
def multi_agent_collaboration(self, job: str) -> Dict(str, str):
"""Orchestrate multi-agent collaboration utilizing Gemini"""
outcomes = {}
brokers = {
"assistant": (self.assistant, "complete evaluation"),
"code_reviewer": (self.code_reviewer, "code evaluation perspective"),
"creative_analyst": (self.creative_analyst, "inventive options"),
"data_specialist": (self.data_specialist, "data-driven insights")
}
for agent_name, (agent, perspective) in brokers.objects():
strive:
immediate = f"Activity: {job}nnProvide your {perspective} on this job."
response = agent.generate_reply(({"function": "person", "content material": immediate}))
outcomes(agent_name) = response if isinstance(response, str) else str(response)
besides Exception as e:
outcomes(agent_name) = f"Agent {agent_name} error: {str(e)}"
return outcomes
def run_comprehensive_analysis(self, question: str) -> Dict(str, Any):
"""Run complete evaluation utilizing all Gemini-powered capabilities"""
outcomes = {}
analyses = ("textual content", "abstract", "inventive")
for analysis_type in analyses:
strive:
outcomes(f"sk_{analysis_type}") = self.analyze_with_semantic_kernel(question, analysis_type)
besides Exception as e:
outcomes(f"sk_{analysis_type}") = f"Error: {str(e)}"
strive:
outcomes("multi_agent") = self.multi_agent_collaboration(question)
besides Exception as e:
outcomes("multi_agent") = f"Multi-agent error: {str(e)}"
strive:
outcomes("direct_gemini") = self.gemini.generate_response(
f"Present a complete evaluation of: {question}", temperature=0.6
)
besides Exception as e:
outcomes("direct_gemini") = f"Direct Gemini error: {str(e)}"
return outcomes
We add our end-to-end AI orchestration within the AdvancedGeminiAgent class, the place we initialize our Semantic Kernel plugin, Gemini wrapper, and configure a set of specialist AutoGen brokers (assistant, code reviewer, inventive analyst, knowledge specialist, and person proxy). With easy strategies for semantic-kernel bridging, multi-agent collaboration, and direct Gemini calls, we allow a seamless, complete evaluation pipeline for any person question.
def fundamental():
"""Principal execution perform for Google Colab with Gemini Flash"""
print("🚀 Initializing Superior Gemini Flash AI Agent...")
print("⚡ Utilizing Gemini 1.5 Flash for high-speed, cost-effective AI processing")
strive:
agent = AdvancedGeminiAgent()
print("✅ Agent initialized efficiently!")
besides Exception as e:
print(f"❌ Initialization error: {str(e)}")
print("💡 Be certain to set your Gemini API key!")
return
demo_queries = (
"How can AI remodel schooling in growing nations?",
"def fibonacci(n): return n if n <= 1 else fibonacci(n-1) + fibonacci(n-2)",
"What are essentially the most promising renewable power applied sciences for 2025?"
)
print("n🔍 Working Gemini Flash Powered Evaluation...")
for i, question in enumerate(demo_queries, 1):
print(f"n{'='*60}")
print(f"🎯 Demo {i}: {question}")
print('='*60)
strive:
outcomes = agent.run_comprehensive_analysis(question)
for key, worth in outcomes.objects():
if key == "multi_agent" and isinstance(worth, dict):
print(f"n🤖 {key.higher().change('_', ' ')}:")
for agent_name, response in worth.objects():
print(f" 👤 {agent_name}: {str(response)(:200)}...")
else:
print(f"n📊 {key.higher().change('_', ' ')}:")
print(f" {str(worth)(:300)}...")
besides Exception as e:
print(f"❌ Error in demo {i}: {str(e)}")
print(f"n{'='*60}")
print("🎉 Gemini Flash AI Agent Demo Accomplished!")
print("💡 To make use of along with your API key, change 'your-gemini-api-key-here'")
print("🔗 Get your free Gemini API key at: https://makersuite.google.com/app/apikey")
if __name__ == "__main__":
fundamental()
Lastly, we run the principle perform that initializes the AdvancedGeminiAgent, prints out standing messages, and iterates by a set of demo queries. As we run every question, we acquire and show outcomes from semantic-kernel analyses, multi-agent collaboration, and direct Gemini responses, making certain a transparent, step-by-step showcase of our multi-agent AI workflow.
In conclusion, we showcased how AutoGen and Semantic Kernel complement one another to provide a flexible, multi-agent AI system powered by Gemini Flash. We highlighted how AutoGen simplifies the orchestration of various skilled brokers, whereas Semantic Kernel gives a clear, declarative layer for outlining and invoking superior AI capabilities. By uniting these instruments in a Colab pocket book, we’ve enabled fast experimentation and prototyping of complicated AI workflows with out sacrificing readability or management.
Take a look at the Codes. All credit score for this analysis goes to the researchers of this mission. Additionally, be at liberty to comply with us on Twitter and don’t neglect to hitch our 100k+ ML SubReddit and Subscribe to our Publication.

Asif Razzaq is the CEO of Marktechpost Media Inc.. As a visionary entrepreneur and engineer, Asif is dedicated to harnessing the potential of Synthetic Intelligence for social good. His most up-to-date endeavor is the launch of an Synthetic Intelligence Media Platform, Marktechpost, which stands out for its in-depth protection of machine studying and deep studying information that’s each technically sound and simply comprehensible by a large viewers. The platform boasts of over 2 million month-to-month views, illustrating its recognition amongst audiences.
