Friday, May 2, 2025

Deep Studying with R, 2nd Version

Deep Studying with R, 2nd Version

As we speak we’re happy to announce the launch of Deep Studying with R,
2nd Version
. In comparison with the primary version,
the e book is over a 3rd longer, with greater than 75% new content material. It’s
not a lot an up to date version as an entire new e book.

This e book reveals you the way to get began with deep studying in R, even when
you haven’t any background in arithmetic or knowledge science. The e book covers:

  • Deep studying from first rules

  • Picture classification and picture segmentation

  • Time sequence forecasting

  • Textual content classification and machine translation

  • Textual content technology, neural type switch, and picture technology

Solely modest R information is assumed; every part else is defined from
the bottom up with examples that plainly display the mechanics.
Study gradients and backpropogation—by utilizing tf$GradientTape()
to rediscover Earth’s gravity acceleration fixed (9.8 (m/s^2)). Be taught
what a keras Layer is—by implementing one from scratch utilizing solely
base R. Be taught the distinction between batch normalization and layer
normalization, what layer_lstm() does, what occurs if you name
match()and so forth—all by implementations in plain R code.

Each part within the e book has obtained main updates. The chapters on
laptop imaginative and prescient achieve a full walk-through of the way to method a picture
segmentation activity. Sections on picture classification have been up to date to
use {tfdatasets} and Keras preprocessing layers, demonstrating not simply
the way to compose an environment friendly and quick knowledge pipeline, but additionally the way to
adapt it when your dataset requires it.

The chapters on textual content fashions have been utterly reworked. Learn to
preprocess uncooked textual content for deep studying, first by implementing a textual content
vectorization layer utilizing solely base R, earlier than utilizing
keras::layer_text_vectorization() in 9 alternative ways. Study
embedding layers by implementing a customized
layer_positional_embedding(). Be taught in regards to the transformer structure
by implementing a customized layer_transformer_encoder() and
layer_transformer_decoder(). And alongside the best way put all of it collectively by
coaching textual content fashions—first, a movie-review sentiment classifier, then,
an English-to-Spanish translator, and eventually, a movie-review textual content
generator.

Generative fashions have their very own devoted chapter, overlaying not solely
textual content technology, but additionally variational auto encoders (VAE), generative
adversarial networks (GAN), and elegance switch.

Alongside every step of the best way, you’ll discover sprinkled intuitions distilled
from expertise and empirical commentary about what works, what
doesn’t, and why. Solutions to questions like: when do you have to use
bag-of-words as an alternative of a sequence structure? When is it higher to
use a pretrained mannequin as an alternative of coaching a mannequin from scratch? When
do you have to use GRU as an alternative of LSTM? When is it higher to make use of separable
convolution as an alternative of standard convolution? When coaching is unstable,
what troubleshooting steps do you have to take? What are you able to do to make
coaching quicker?

The e book shuns magic and hand-waving, and as an alternative pulls again the curtain
on each essential elementary idea wanted to use deep studying.
After working by the fabric within the e book, you’ll not solely know
the way to apply deep studying to widespread duties, but additionally have the context to
go and apply deep studying to new domains and new issues.

Deep Studying with R, Second Version

Reuse

Textual content and figures are licensed beneath Inventive Commons Attribution CC BY 4.0. The figures which were reused from different sources do not fall beneath this license and could be acknowledged by a notice of their caption: “Determine from …”.

Quotation

For attribution, please cite this work as

Kalinowski (2022, Might 31). Posit AI Weblog: Deep Studying with R, 2nd Version. Retrieved from https://blogs.rstudio.com/tensorflow/posts/2022-05-31-deep-learning-with-R-2e/

BibTeX quotation

@misc{kalinowskiDLwR2e,
  creator = {Kalinowski, Tomasz},
  title = {Posit AI Weblog: Deep Studying with R, 2nd Version},
  url = {https://blogs.rstudio.com/tensorflow/posts/2022-05-31-deep-learning-with-R-2e/},
  yr = {2022}
}

Related Articles

LEAVE A REPLY

Please enter your comment!
Please enter your name here

Latest Articles